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Diffusion-limited aggregation: A revised mean-field approach
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We propose a revision of the classic mean-field approach of diffusion-limited aggre¢@tidn model
originally introduced by Witten and Sandgrhys. Rev. Lett47, 1400(1981)]. The derived nonlinear mean-
field equations providing lattice anisotropy are used to model diffusional growth on square lattice in linear and
circular source geometries. The overall cluster shapes obtained from the mean-field calculations are found to
satisfy the known scaling behavior experimentally observed for DLA simulations.

PACS numbdps): 68.70+w, 61.43.Hv, 05.10.Ln

[. INTRODUCTION ficiencies of the classic model, Brenetral. proposed some
modification of Eq.(2) which consists in replacing by p”
The well-known member of the class of stochastic modelg13]:

simulating the Laplacian systems is the diffusion-limited ag-
gregation(DLA) introduced by Witten and Sandgt]. In ap oo
this theory, self-similar(fracta) ramified patterns grow via 5 ~u(p7+atvop). ()]
irreversible sticking of random “walkers.” Despite the sim-
plicity of the DLA rules, the model shows unexpectedly
subtle and complex properties and poses a number of the

retical questions such as noise reduction, influence of IatticgrOWth rate at small cluster density. As argued in REg)

; } : ._any functionF(p) that vanishes faster than linearly as
?;lslolt]ropy, free-boundary problem, and asymptotic behawoi0 can be also used instead of, e.g..F (p) = p® (p—A)

In order to characterize an ensemble-averaged behavior é\rﬁvh?re(ﬂ Eth.e Hﬁavgll_(l\e fungu?n:"he ISUbSt'tUI'On rr?lmlcs
the DLA model, various mean-field theori¢MFT) have the fact that in the model, the cluster growth cannot

been proposed and developed. MFT is a set of evolutioccur with an infinitesimal fluctuation op fie_Id. This y
equations illustrating a general continuous formulation formOdeI demonstrates a steady-state growth in Chml
the time development of growing clusters. Constructing of af".md sectof14] geometries, and can pe also “?‘?d for' S'”?“'a'
MFT raises the following main problem: how can be realized!ons of convex-concave morphological transitions in diffu-
the correct transition from discrete units to finite walker andSIV€ SyStem$15]. . o
cluster distributions? A first attempt to establish a mean-field Nevertheless, they-MFT has two important intrinsic

approach for the DLA model goes back to the pioneeringDrOb_lemS' First, the theory motivates the question of how to
work by Witten and Sandefl]. Performing a continuous obtain a growth threshold in a more fundamental way. In the

formulation of walker(u) and cluster ) mean densities, ” model, there is no global revision of the Wittgn-Sande_r
they proposed the following equations: approach, the authors just proposed a mathematical substitu-
' tion p?«<p [it should be emphasized that the phenomeno-
au dp logical parametetye (2- - - 10) does not have a clear physi-
—=Vy— — (1) . o :
ot ot cal explanatioh In addition, the phenomenological
anisotropy introduced by [d?p/x?>+b(d?pldy?)]- or
Ip [*pl 9x*+ 9*pl 9y*]-like terms in Eq.(3) also raises ques-
E=u(p+a2V2p), (2)  tions about its derivatio{13—15. The second problem
seems to be more serious. The comparison between the
wherea is the lattice parameter. In this set of relations, Eq.?"MFT predictions and the. occupancy.probabi!ity distribu-
(1) represents the conservation of mass in a diffusive systeniionS computed from DLA simulations yields satisfactory re-
and Eq.(2) accounts for the growing rule of the cluster field. SUltS as long as the ensemble averaging is performed on
Unfortunately, the Witten-Sander theory cannot model small-size DLA clusters. Some severe discrepancies arise

stable front of clusters due to the crucial instability of Eq.WNen one proceeds to large-size DLA simulations; as
(2): a small perturbation in the field, in the presence of,  Peinted out by Areodet al. [16], the y model fails to re-

will grow exponentially [12]. This unstable behavior is producg thg spreading of ac.tive.front zone of the clusters
caused by the lack of a threshold in this continuous ap3roWn In w'|de channels or in divergent sector'cells. The
proach. However, the discrete DLA model has an implicitWidth of active frontA computed from the mean-field equa-
threshold: growth at a site is disallowed unless a nearesfions does notdisplay any time dependence, a result that is in
neighbor site is fully occupied. In order to remedy the insuf_tcontradlcuon with the scaling behavior known for DLA clus-

J_aking v greater than 1 is a way to introduce a cutoff in the
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where Xg is the front position. This is, without any doubt, In this way, we introduce a threshold for the cluster growth.

one of the main weaknesses of theVIFT. As a result, Eq(5) transforms to

In order to understand the inadequacy of the theories dis-
cussed, one has to come back to the original work by Witten ap(r,t) _ u(r t)f 2(r + e t)dl ®
and Sandef1], and to revise one of the main ingredients of ot ' r+ee|p ' '

the classic approach. There have been several attempts to
construct a MFT with the use of some alternative assump-
tions, e.g., of the cluster nonpenetrabilitieterministig [17]

or of the generic noise effe¢stochasti¢[18]. In the present The proposed relatio(B) gives a general kinetics of the
work, our goal is to revise the Witten-Sander MFT in termsmean-field model. It contains two variable parameters: a
of the Boltzmann theory of irreversible processes. The papesphere of interactionsand a vector se¢. These parameters

is organized as follows. In Sec. II, a revised mean-field apare determined by conditions of neighborhogalg., off-
proach of the DLA model is introduced. The subject of Seclattice, on-lattice of the DLA. In the present paper, we re-
Il is the comparison between the mean-field predictions an@trict our study by a DLA model with the following proper-
results of an ensemble averaging of DLA clusters. Finally, inties: (i) the aggregation takes place on a lattice, i.e., the

B. On-lattice model

Sec. IV a summary of the work is given. integrating can be replaced by a finite summation @ndhe
vector sek has a center of symmetry, i.&;6=0. Then we
IIl. MEAN-FIELD APPROACH can rewrite Eq(8) as
A. General theory dp(r,t)
S Sur D pAre ). 9
|

According to the general Boltzmann theory of irreversible
processes, the DLA model can be considered as a tw
particle interaction between walkafr,t) and clustep(r,t)
fields. In order to describe the process of aggregation, let u
write the interaction intensit$t(r,t) = dp(r,t)/dt (the Bolt-
zmann integralas

Ci—|ereeI are the vectors to adjacent sites armiins over the
gumber of neighbors.

In order to obtain the continuous representation of(Ej.
let us use the formula of the Taylor decomposition

1
St(r,t)= Iu(r,t)p(rJre,t)Wim(r,e,t)dl. (5) P(fﬂﬁ,t)=P(f,t)+QVP(f,t)+§QV[QVP(Y,'E)]-
r+ee (10)

;—|ere.u(r,t) and p(r,t) are considered as the distribution The squared Eq10) follows from the expression
unctions
p*(r+e,t)=p°+p[2eVp+gV(eVp)]+[eVpl?
O=u(r,t)y<1, O=p(r,t)<1. (6)

1

_ 2
In Eqg. (5), the functionW,(r,e,t) represents the probability +[QV’)][QV(QV’))]+4[QV(QV’))] '
of the successful interactidine., leading to the aggregatipn (11)
between walker and cluster fields; the integrating is per-

formed inside the sphere of interactioft ec |. This formu-  \where we writep instead ofp(r,t). After thei summation,
lation can be explained as follows. If there is a two-particlethe terms with odd powers of are rejecteddue to the

interaction where the first particle is a walker “uniti(r,t)  condition of lattice symmetry;e =0), and we obtain
and the second one is a cluster “unip(r+et), then the

integration means that the walker unit interacts with all pos- 5
sible neighboring cluster units. E. p(r+e ,t)=2
The issue of this theory is to establish the relationship

betweenW,(r,et) and the interacting fields. In order to 1 )

understand the nature of the aggregation process, let us focus + Z[e,V(e,Vp)] } (12

on a particular walker unit(rq) which interacts with a clus-

ter unit p(ro+ey). In the classic Witten-Sander mean-field As a result, Eq(9) transforms to the following differential

approach, the interaction probability is considered to beaw for the time evolution of the cluster field:

number oneWi(rq,6)=1, i.e., even for an infinitesimal

value of the cluster density(r,+€,) each interaction with ap 2

the walker unitu(r) leads to the aggregation. This assump- ot u i

tion seems to be the most questionable. It is probable that a

more realistic hypothesis is the linear connection between 1

Win(ro,€) and p(ro+ep), i.e., the probability of the suc- +Z[QV(QVP)]2}' (13

cessful interaction is proportional to the cluster density. Due

to the normalization conditiofEq. (6)], we propose the fol- One can notice two main properties of the mean-field re-

lowing main relation of the revised mean-field approach: lation derived. First, Eq(13) demonstrates the linear stabil-
ity to infinitesimal fluctuations; a small perturbatiaip in

Wi(r,et)=p(r+et). (7)  thep(r,t) field will vanish as

p’+pleV(eVp)]+[eVp]?

p’+pleV(eVp)]+[eVp]?
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(14

Second, Eq(13) provides lattice anisotropy due to the an-
isotropic features of the terfre V(e Vp)]2.

IIl. NUMERICAL SIMULATIONS

The mean-field equatiofi3) derived in the previous sec-

tion represents a general relation that can be used for differy

ent dimensiong1D, 2D, 3D, ...), source geometrie@in-
ear, circular, spherical, . ), and latticegsquare, hexagonal,
cubic, ...). In this work, we present a study of the mean-

field model on square lattice. Assuming only nearest-

neighbor interactions, we can rewrite Eq3) as

d Pp  d? ap\2 [ap\?
% _u p2+a? p IPLIPY %P %P
ot (9X2 &y2 IX &y
4 2 \2 2 \2
at| (o J
SIS+ 52 | (15)
4|\ ox? ay?

wherea=(Z;€’)'? s the lattice spacing. To obtain the com-
plete set, Eq(15) should be coupled with the walker diffu-
sion equation(1) written for the case of square lattice as

|

A. Linear source geometry

Pu  d*u

Ju
_+ R
x> ay?

ap
at

o (16)

Let us assume that motion and aggregation of walkers

take place inside a channel of widW. As argued in Ref.
[13], the v-MFT gives the distribution of cluster field in the
asymptotic casex—, when the behavior of mean-field
equations is fully determined by the lateral boundafies,
width of the active front zoneA—W). In this case, the

theory satisfactorily describes the Saffman-Taylor pattern

[13]. However, they model fails to predict the cluster shape
when the boundaries do not affect the cluster field, i.e., in th
caseA <W/2 [16]. In order to examine the mean-field equa-

tions introduced, we present the study of this wide-channe

problem.

1. Mean-field predictions

Formulating the restrictions on the lateral boundaries o

the channel, we impose the Neuman condition forutiield
and the Dirichlet condition for the field:

=0 —+W 1
gy 0 B Y=E5, 17
w
p=0 as yziE. (18
At infinity, we fix the flux of the walkers
&u_
P4 as x—oo, (29
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FIG. 1. Mean-field calculations of overall cluster shape per-
formed inside channel of widttW= 128 on square latticeaE=1) in
linear source geometry. Thick curves represent contqifssy
=0)=0.01 of cluster field distribution at different stages of growth;
numbers at the curves represent positions of active front Xgne
Thin auxiliary curve is functiory~x? illustrating by dotted lines

the scaling behavior of front width ~ X2

Let us consider the cluster growth to settle in the center of
the channel from the beginning:

p(0,0=1. (20)

For this initial condition, the scaling behaviar~XY? [Eq.

(4)] is known from DLA simulations. In order to prove the
validity of the mean-field equations derived, we have solved
Eqgs.(15—(20) numerically. In Fig. 1, we present the overall

gontour plots of cluster field distributiop(x,y=0)=0.01

calculated for the channel of widthV=128 at different

Stages of growth. The figure demonstrates the evolution of

cluster shape at the positions of the active front zdpe
r 16, 64, 144, and 256. For each stage of the cluster growth,
one can observe the classic Ilvantsov @8] in the tip re-
gions of the curves. As a result, the cluster widthrexactly
resembles the scaling~X%? illustrated by the auxiliary
urve y~x*2 1t should be noted that similar contour plots
ere obtained by Kassner and Bref260] when they con-
structed the noiseless DLA model from the macroscopic
principles of the cluster tip formation.

In Fig. 2, we present the spatial cluster distribution in the
case ofXp=256. The figure shows the contour plots of the
cluster fieldp(x,y) [Fig. 2@)], the longitudinal profile of
p(x,y) in the sectiony=0 [Fig. 2(b)], and the transverse
profile of p(x,y)=p(X,y)/p(100,0) in the sectiorx=100
[Fig. 2(c)]. The obtained contour plots are characterized by a
fingerlike shape where the tip length slightly exceeds the
base one, so the maximal cluster width,~46 is observed
in a neighborhood of the sectior+ 100. In this section, the
transverse cluster profile[Fig. 2(c)] demonstrates a
convex-up behavior; the maximum of the density is related



PRE 61 DIFFUSION-LIMITED AGGREGATION: A REVISED . .. 5425

60 60
40 (a) 40 (a)
20 20

yo yo

-2 i :
-20 — p=0.01 ° #2 0.10<p<0.15
o — p=0.10 -40 B8 0.15<p<0.20
— p=0.30 . 020<p<1.00
w — p=050 -60
0 50 100 150 200, 250 0 50 100 180 o x

0.8 (b) 08 (c) 08 (b) 0.8 /\\ (c)
0.6| 0.6} 0.6 06 / \\

p P P p \

04 o4l 04l\ 0.4

0.2 0.2 0.2 M/‘“‘VN“MM 0.2

036200 0 10 20 _ 30
X

0
50 100 150 200" 250 00 %0 <20 0 0 10 20, 30 0 50 100 150 200 250,300

FIG. 2. Mean-field calculations of cluster field distribution ~ FIG. 3. Statistical analysis ¢f=1000 DLA clusters containing
p(x,y) performed inside channel of widiv= 128 on square lattice M :2X103_ particles grown inside channel of wid/=128 on
(a=1) in linear source geometrya Contour plots ofp(X,y) square lattice §=1) in linear source geometrya) Mean cluster
where the levels arg(x,y)=0.01, 0.1, 0.3, and 0.5 from the outer occupancyp(x,y) in field-plot representation where the fields are
to the inner.(b) Longitudinal profile ofp(x,y) in the sectiony ~ 0-1=p(x,y)<0.15, 0.15p(x,y)<0.2, and 0.Zp(x,y)<1 from
=0. (c) Transverse profile op(x.y)=p(X.y)/p(100,0) in the sec- the outer to the inner(b) Longitudinal_profile of p(x,y) in the
tion x= 100. sectiony=0. (c) Transverse profile op(x,y)=p(x,y)/p(100,0)

averaged over 20 sectiong= (90 - - 110).

to the cluster axe. As shown by Fig(b?, there are three

distinct regiqns in the I_on_gitudinal _profile o_f the cluster ﬁeld';(X,y)Ep(X,y)/p(]_OO,O) in a neighborhood of the section

First there is some initial transient regime= (0---50)  y_100[Fig. 3(c)]. The obtained cluster distributign(x,y)

where one progressively loses the influence of initial condinq jis profiles qualitatively resemble the results of the the-

tions to the benefit of the growth. In this region, the clusterg atical predictiongFig. 2]. To resume the difference be-

density decreases from 1 to a constant valu€0.6. Then,  yeen the figures, the theoretical distributiefx,y) is char-

there is a region of a stable growtle (50- - - 240) where the  4cterized by more sharp behavior than the statistical one. The

cluster field changes_ insignificantly. In the third_ regien  most discrepancy is related to the tip region of the longitu-

€ (240 - -256), there is a rapid falloff of the density. dinal cluster profildFigs. 2b) and 3b)] and to the tails of

the transverse cluster profil€igs. 2c) and 3c)] where the

observed dispersion of the statistical results drastically ham-
In order to compare the theoretical mean-field predictiongers the detailed comparison.

with results of a statistical analysis of DLA clusters, one has To reduce the effect of noise, one of the possible ways is

to measure the mean occupancy distribupgr,y) obtained to increase the number of realizatioNs However, the de-

from an ensemble averaging over a given number of clustergendence of the noise errég on the numbem is rather

N. For Monte Carlo(MC) simulations, we use the classic weak:

Witten-Sander algorithml]. The walkers are released from

a linear source outside the cluster; when a walker becomes

adjacent to the cluster, the walker site is considered to be S 1 21)

occupied. In a given channel, we grdwwaggregates with the N IN

same total numbeM of particles. We then count for each

site how many times it has been occupied by a particle of a

cluster. The mean occupanpyx,y) is obtained by dividing To decrease the noise amplitude by 10 times, one has to

this number by the total numbét of realizations. increase the number of clusters by 100 times. This way
In Fig. 3, we present the analysis of the ensemble averageems to be impractical because of computational time limi-

ing of 2x 10°-particle DLA clusters simulated in the channel tation. In order to decrease the noise influence in a more

of width W=128. In order to decrease noise errors, the reefficient way, we combine the ensemble averaging with the

sults are averaged over 1000 clusters. The figure demomoise-reducing algorithm introduced by Tafpg]. Rather

strates a two-dimensional representation of the cluster distrthan take a single walk as an independent contribution to the

bution p(x,y) [Fig. 3], the longitudinal profile ofp(x,y) cluster, a multiple registration for every interfacial site is

in the sectiony=0 [Fig. 3(b)], and the transverse profile of considered. The site can be occupied only when it has been

2. Ensemble averaging
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FIG. 4. Statistical analysis dil=250 DLA clusters(obtained
by Tang’s averaging scheme with number of registratiNpgs-4)
containingM = 2X 10° particles grown inside channel of widiV
=128 on square latticea=1) in linear source geometrya Mean
cluster occupancy(x,y) in field-plot representation where the
fields are 0.£p(x,y)<0.2, 0.2<p(x,y)<0.3, and 0.%p(X,y)
<1 from the outer to the innefb) Longitudinal profile ofp(x,y)
in the section y=0. (c) Transverse profile of p(x,y)

=p(x,y)/p(100,0) averaged over 20 sectioxns (90- - - 110).
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FIG. 5. Contour plots of cluster field distribution(x,y) ob-
tained from mean-field calculations on square lattiae- () in cir-
cular source geometry. Contour levels aiex,y)=0.01, 0.1, and
0.4 from the outer to the inner.

origin. As the initial condition, we consider the cluster
nucleus located at the origip(0,0)=1 [Eq. (20)].

The results of the mean-field calculations are summarized
by Fig. 5, which shows the contour plots of theoretical dis-
tribution p(x,y). Each plot can be described as four symmet-

registered\ times; this scheme results in the reduction ofric fingerlike branches that grow in directio0), (10),
spatial dispersion without the increase of total simulation<01>, and <0T> due to the square lattice symmetry. The

time [5-7].

branches qualitatively resemble the shapes obtained in the

The application_ of Tang’s nois_e—reducing algorith_m to_ thejinear source geometiFig. 2@)]; only the width to length
ensemble averaging is summarized by Fig. 4, which illusyaiios differ. In the region of active front zone, the cluster

trates the mean cluster occupandy,y) [Fig. 4@ ] and also
its longitudinal[Fig. 4(b)] and transversfFig. 4(c)] profiles

in the same way as Fig. 3. Even for a small number of reg-

istrationsNg=4 the obtained dispersion of the cluster field

field is also observed to satisfy the scaling behawuor
~X¢? [Eq. (4)].

2. Ensemble averaging

significantly decreases in comparison to one observed with-

out Tang’s schemégFig. 3]. The mean cluster occupancy is
characterized by the same fingerlike shap@s. 2a) and
3(@)], and its longitudinal[Fig. 4b)] and transvers¢Fig.

For the statistical analysis, we average the cluster en-
semble simulated by the classic Witten-Sander DLA algo-
rithm [1] and by Tang’s noise-reducing schef8¢where the

4(c)] profiles seem to be described by the theoretical CurVeg/alkers are released from a circular source outside the clus-

[Figs. 2b) and 2c)] in a more precise way, especially in the
tip of the cluster and in the tails of the transverse profile.

B. Circular source geometry

1. Mean-field predictions

. . r
Let us assume that motion and aggregation of the growth
units take place inside a circle. In this case, we have only ong,

boundary condition at infinity where the flux of the walkers
is fixed:

Ju

——=¢ as r—«=,
a ¢

(22)

Here r=x?+y? is the distance from pointx(y) to the

ter. In Fig. 6, we present the mean cluster occupar(ayy)

of 4x 10°-particle DLA clusters averaged over 1000 simula-
tions. The simple ensemble averaging results in a significant
noise dispersion of data that hampers the following analysis
of the cluster distribution. This dispersion drastically exceeds
one observed in linear source geometRig. 3); one can
esolve only an anisotropic behavior of the cluster field.

The mean cluster occupan@(x,y) of 4X 10°-particle

LA clusters shown in Fig. 7 is obtained from MC simula-
tions where the averaging over 250 clusters is combined with
the additional Tang’s noise-reducing scheftie number of
registrationsNg=4). In contrast to Fig. 6, the noise reduc-
tion gives an opportunity to characterize the cluster field in a
more detailed way. As seen in the figure, the obtained cluster
distribution p(x,y) satisfactorily resembles the theoretical
prediction(Fig. 5).
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FIG. 6. Field-plot representation of mean cluster occupancy
p(x,y) of N=1000 DLA clusters containingl =4x 10° particles
grown on square latticea=1) in circular source geometry. The
fields are 0.05p<0.1, 0.5 p<0.2, and 0.Z p<1 from the outer
to the inner.

FIG. 8. Field-plot representation of cluster field distribution
p(x,y) obtained in case of stochastic walker behavior on square
lattice (@=1) in circular source geometry. The fields are GQi
<0.25, 0.25p<0.5, and 0.5 p<1 from the outer to the inner.

3. Stochastic behavior of diffusive field cluster is located at the origip(0,0)=1. Each walker mod-

. . . eled by a simple random motion is considered to transfer a
In conclusion of the paper, let us investigate the mean-

. < . . - — L
field approach introducefEq. (9)] in the case of stochastic ;O\?viﬁl(gtr dbeen;?f]gj gél.gcoeu;tsggnl::]ae“ocrrjstgr ﬁé‘ Xlltg?:?]ment
behavior of the diffusive fieldi. This problem is consistent ) ’

with the following MC algorithm. Initially, a nucleus of the probability P is calculated by the formula

P:pz(x+ l,y) +p2(X— l7y) +p2(X,y+ 1) + pZ(X,y_ 1()23)

Then a random number<OR<1 is simulated. IIR<P, the
walker transforms into the cluster site and advances the clus-
ter densityp(x,y) by the value ofugy. In the opposite case,
R>P, that walker continues its random motion until it ag-
gregates somewhere on the cluster. As successive walkers
repeat this process, the cluster density fie(d,y) is modi-

fied. The simulation is continued until the cluster reaches a
specified size.

The results of MC simulations are summarized by Fig. 8,
which illustrates the cluster distribution in two-dimensional
representation. The features of the obtained cluster field sig-
nificantly depend on the length scale. On the one hand, the
overall cluster shape satisfies the mean-field prediction

; ## 0.05<p<0.10 shown in Fig. 5. The pattern can be described as a compact
400} & 0.10<p<0.20

fingerlike structure with fourfold symmetry; near the growth
- 020<p<1.00 front, the cluster density rapidly increases from 0 to an av-
100 50 50 100 erage valugp=~0.25. One the other hand, the cluster distri-

X bution also demonstrates a ramified behavior; within the pat-

FIG. 7. Field-plot representation of mean cluster occupancylen. @ fractal DLA-like “skeleton,” p(x,y)=0.5, can be
p(x,y) of N=250 DLA clusters(obtained by Tang's averaging resolved. To resume, the observed cluster evolution includes
scheme with number of registratio$z=4) containingM=4 @ superposition of deterministic and random processes. The
X 10° particles grown on square lattica£1) in circular source ~deterministic part is governed by the mean-field equations
geometry. The fields are 0.6 <0.1, 0..kp<0.2, and 0.Zp introduced; the random one follows the stochastic DLA be-
<1 from the outer to the inner. havior. As a consequence, we observe the effects of side-
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branching and tip splitting that make the obtained patterrio satisfy the scaling behavior for width of the active cluster
very similar to ones described in most diffusive systemszone experimentally known from DLA simulations.
[21,27. (3) We have studied the ensemble averaging of DLA clus-
ters grown on square lattice in linear and circular geometries
IV. SUMMARY of source. The comparison between the mean-field predic-
tions and the ensemble averaging gives a qualitative resem-
(1) We have revised the Witten-Sander mean-field apblance of the data. The discrepancy significantly decreases
proach of the DLA model in terms of the Boltzmann theory when one proceeds to Tang’s noise-reducing DLA algo-
of irreversible processes. Instead of the classic linear connecithm.
tion between the DLA intensity and the neighboring cluster (4) We have investigated the influence of stochastic
densities, we propose the squared law followed from thevalker behavior on cluster field distribution. The overall
phenomenological assumption. The derived mean-field equaiuster shape is observed to satisfy the mean-field prediction
tions demonstrate both the front stability to infinitesimal calculated for deterministic walker motion. The local cluster
fluctuations and the anisotropic behavior caused by the nordistribution is characterized by fractal properties known for
linearity of the approach introduced. DLA structures; this results in the sidebranching and tip
(2) We have examined the proposed mean-field equationsplitting.
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