
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Diffusion-limited aggregation: A revised mean-field approach

Vladislav A. Bogoyavlenskiy* and Natasha A. Chernova
Low Temperature Physics Department, Moscow State University, Moscow 119899, Russia

~Received 16 August 1999; revised manuscript received 30 December 1999!

We propose a revision of the classic mean-field approach of diffusion-limited aggregation~DLA ! model
originally introduced by Witten and Sander@Phys. Rev. Lett.47, 1400~1981!#. The derived nonlinear mean-
field equations providing lattice anisotropy are used to model diffusional growth on square lattice in linear and
circular source geometries. The overall cluster shapes obtained from the mean-field calculations are found to
satisfy the known scaling behavior experimentally observed for DLA simulations.

PACS number~s!: 68.70.1w, 61.43.Hv, 05.10.Ln
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I. INTRODUCTION

The well-known member of the class of stochastic mod
simulating the Laplacian systems is the diffusion-limited a
gregation~DLA ! introduced by Witten and Sander@1#. In
this theory, self-similar~fractal! ramified patterns grow via
irreversible sticking of random ‘‘walkers.’’ Despite the sim
plicity of the DLA rules, the model shows unexpected
subtle and complex properties and poses a number of t
retical questions such as noise reduction, influence of lat
anisotropy, free-boundary problem, and asymptotic beha
@2–11#.

In order to characterize an ensemble-averaged behavi
the DLA model, various mean-field theories~MFT! have
been proposed and developed. MFT is a set of evolu
equations illustrating a general continuous formulation
the time development of growing clusters. Constructing o
MFT raises the following main problem: how can be realiz
the correct transition from discrete units to finite walker a
cluster distributions? A first attempt to establish a mean-fi
approach for the DLA model goes back to the pioneer
work by Witten and Sander@1#. Performing a continuous
formulation of walker~u! and cluster (r) mean densities
they proposed the following equations:

]u

]t
5¹2u2

]r

]t
, ~1!

]r

]t
5u~r1a2¹2r!, ~2!

wherea is the lattice parameter. In this set of relations, E
~1! represents the conservation of mass in a diffusive syst
and Eq.~2! accounts for the growing rule of the cluster fiel

Unfortunately, the Witten-Sander theory cannot mode
stable front of clusters due to the crucial instability of E
~2!: a small perturbation in ther field, in the presence ofu,
will grow exponentially @12#. This unstable behavior is
caused by the lack of a threshold in this continuous
proach. However, the discrete DLA model has an impl
threshold: growth at a site is disallowed unless a near
neighbor site is fully occupied. In order to remedy the ins
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ficiencies of the classic model, Breneret al. proposed some
modification of Eq.~2! which consists in replacingr by rg

@13#:

]r

]t
5u~rg1a2¹2r!. ~3!

Takingg greater than 1 is a way to introduce a cutoff in t
growth rate at small cluster density. As argued in Ref.@13#,
any function F(r) that vanishes faster than linearly asr
→0 can be also used instead ofrg, e.g.,F(r)5rQ(r2A)
~whereQ is the Heaviside function!. The substitution mimics
the fact that in the DLA model, the cluster growth cann
occur with an infinitesimal fluctuation ofr field. This g
model demonstrates a steady-state growth in channel@13#
and sector@14# geometries, and can be also used for simu
tions of convex-concave morphological transitions in diff
sive systems@15#.

Nevertheless, theg-MFT has two important intrinsic
problems. First, the theory motivates the question of how
obtain a growth threshold in a more fundamental way. In
g model, there is no global revision of the Witten-Sand
approach, the authors just proposed a mathematical subs
tion rg↔r @it should be emphasized that the phenome
logical parametergP(2•••10) does not have a clear phys
cal explanation#. In addition, the phenomenologica
anisotropy introduced by @]2r/]x21b(]2r/]y2)#- or
@]4r/]x41]4r/]y4#-like terms in Eq.~3! also raises ques
tions about its derivation@13–15#. The second problem
seems to be more serious. The comparison between
g-MFT predictions and the occupancy probability distrib
tions computed from DLA simulations yields satisfactory r
sults as long as the ensemble averaging is performed
small-size DLA clusters. Some severe discrepancies a
when one proceeds to large-size DLA simulations;
pointed out by Arneodoet al. @16#, the g model fails to re-
produce the spreading of active front zone of the clust
grown in wide channels or in divergent sector cells. T
width of active frontD computed from the mean-field equa
tions does not display any time dependence, a result that
contradiction with the scaling behavior known for DLA clu
ters

D;XF
1/2, ~4!
5422 ©2000 The American Physical Society
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whereXF is the front position. This is, without any doub
one of the main weaknesses of theg-MFT.

In order to understand the inadequacy of the theories
cussed, one has to come back to the original work by Wit
and Sander@1#, and to revise one of the main ingredients
the classic approach. There have been several attemp
construct a MFT with the use of some alternative assum
tions, e.g., of the cluster nonpenetrability~deterministic! @17#
or of the generic noise effect~stochastic! @18#. In the present
work, our goal is to revise the Witten-Sander MFT in term
of the Boltzmann theory of irreversible processes. The pa
is organized as follows. In Sec. II, a revised mean-field
proach of the DLA model is introduced. The subject of S
III is the comparison between the mean-field predictions
results of an ensemble averaging of DLA clusters. Finally
Sec. IV a summary of the work is given.

II. MEAN-FIELD APPROACH

A. General theory

According to the general Boltzmann theory of irreversib
processes, the DLA model can be considered as a t
particle interaction between walkeru(r ,t) and clusterr(r ,t)
fields. In order to describe the process of aggregation, le
write the interaction intensitySt(r ,t)5]r(r ,t)/]t ~the Bolt-
zmann integral! as

St~r ,t !5E
r1ePI

u~r ,t !r~r1e,t !Wint~r ,e,t !dI. ~5!

Here u(r ,t) and r(r ,t) are considered as the distributio
functions

0<u~r ,t !<1, 0<r~r ,t !<1. ~6!

In Eq. ~5!, the functionWint(r ,e,t) represents the probabilit
of the successful interaction~i.e., leading to the aggregation!
between walker and cluster fields; the integrating is p
formed inside the sphere of interactionr1ePI . This formu-
lation can be explained as follows. If there is a two-parti
interaction where the first particle is a walker ‘‘unit’’u(r ,t)
and the second one is a cluster ‘‘unit’’r(r1e,t), then the
integration means that the walker unit interacts with all p
sible neighboring cluster units.

The issue of this theory is to establish the relations
betweenWint(r ,e,t) and the interacting fields. In order t
understand the nature of the aggregation process, let us f
on a particular walker unitu(r0) which interacts with a clus-
ter unit r(r01e0). In the classic Witten-Sander mean-fie
approach, the interaction probability is considered to
number one,Wint(r0 ,e0)[1, i.e., even for an infinitesima
value of the cluster densityr(r01e0) each interaction with
the walker unitu(r0) leads to the aggregation. This assum
tion seems to be the most questionable. It is probable th
more realistic hypothesis is the linear connection betw
Wint(r0 ,e0) and r(r01e0), i.e., the probability of the suc
cessful interaction is proportional to the cluster density. D
to the normalization condition@Eq. ~6!#, we propose the fol-
lowing main relation of the revised mean-field approach:

Wint~r ,e,t !5r~r1e,t !. ~7!
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In this way, we introduce a threshold for the cluster grow
As a result, Eq.~5! transforms to

]r~r ,t !

]t
5u~r ,t !E

r1ePI
r2~r1e,t !dI. ~8!

B. On-lattice model

The proposed relation~8! gives a general kinetics of th
mean-field model. It contains two variable parameters
sphere of interactionsI and a vector sete. These parameter
are determined by conditions of neighborhood~e.g., off-
lattice, on-lattice! of the DLA. In the present paper, we re
strict our study by a DLA model with the following proper
ties: ~i! the aggregation takes place on a lattice, i.e.,
integrating can be replaced by a finite summation and~ii ! the
vector sete has a center of symmetry, i.e.,( iei50. Then we
can rewrite Eq.~8! as

]r~r ,t !

]t
5u~r ,t !(

i
r2~r1ei ,t !. ~9!

Hereei are the vectors to adjacent sites andi runs over the
number of neighbors.

In order to obtain the continuous representation of Eq.~9!,
let us use the formula of the Taylor decomposition

r~r1ei ,t !5r~r ,t !1ei¹r~r ,t !1
1

2
ei¹@ei¹r~r ,t !#.

~10!

The squared Eq.~10! follows from the expression

r2~r1ei ,t !5r21r@2ei¹r1ei¹~ei¹r!#1@ei¹r#2

1@ei¹r#@ei¹~ei¹r!#1
1

4
@ei¹~ei¹r!#2,

~11!

where we writer instead ofr(r ,t). After the i summation,
the terms with odd powers ofei are rejected~due to the
condition of lattice symmetry( iei50), and we obtain

(
i

r2~r1ei ,t !5(
i

H r21r@ei¹~ei¹r!#1@ei¹r#2

1
1

4
@ei¹~ei¹r!#2J . ~12!

As a result, Eq.~9! transforms to the following differentia
law for the time evolution of the cluster field:

]r

]t
5u(

i
H r21r@ei¹~ei¹r!#1@ei¹r#2

1
1

4
@ei¹~ei¹r!#2J . ~13!

One can notice two main properties of the mean-field
lation derived. First, Eq.~13! demonstrates the linear stabi
ity to infinitesimal fluctuations; a small perturbationdr in
the r(r ,t) field will vanish as
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]~dr!

]t
;~dr!2. ~14!

Second, Eq.~13! provides lattice anisotropy due to the a
isotropic features of the term@ei¹(ei¹r)#2.

III. NUMERICAL SIMULATIONS

The mean-field equation~13! derived in the previous sec
tion represents a general relation that can be used for di
ent dimensions~1D, 2D, 3D, . . .!, source geometries~lin-
ear, circular, spherical, . . .!, and lattices~square, hexagona
cubic, . . .!. In this work, we present a study of the mea
field model on square lattice. Assuming only neare
neighbor interactions, we can rewrite Eq.~13! as

]r

]t
5uH r21a2FrS ]2r

]x2
1

]2r

]y2D 1S ]r

]xD 2

1S ]r

]yD 2G
1

a4

4 F S ]2r

]x2D 2

1S ]2r

]y2D 2G J , ~15!

wherea[(( iei
2)1/2 is the lattice spacing. To obtain the com

plete set, Eq.~15! should be coupled with the walker diffu
sion equation~1! written for the case of square lattice as

]u

]t
5S ]2u

]x2
1

]2u

]y2D 2
]r

]t
. ~16!

A. Linear source geometry

Let us assume that motion and aggregation of walk
take place inside a channel of widthW. As argued in Ref.
@13#, theg-MFT gives the distribution of cluster field in th
asymptotic casex→`, when the behavior of mean-fiel
equations is fully determined by the lateral boundaries~i.e.,
width of the active front zoneD→W). In this case, the
theory satisfactorily describes the Saffman-Taylor patte
@13#. However, theg model fails to predict the cluster shap
when the boundaries do not affect the cluster field, i.e., in
caseD,W/2 @16#. In order to examine the mean-field equ
tions introduced, we present the study of this wide-chan
problem.

1. Mean-field predictions

Formulating the restrictions on the lateral boundaries
the channel, we impose the Neuman condition for theu field
and the Dirichlet condition for ther field:

]u

]y
50 as y56

W

2
, ~17!

r50 as y56
W

2
. ~18!

At infinity, we fix the flux of the walkers

]u

]x
5w as x→`. ~19!
r-
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Let us consider the cluster growth to settle in the cente
the channel from the beginning:

r~0,0!51. ~20!

For this initial condition, the scaling behaviorD;XF
1/2 @Eq.

~4!# is known from DLA simulations. In order to prove th
validity of the mean-field equations derived, we have solv
Eqs.~15!–~20! numerically. In Fig. 1, we present the overa
contour plots of cluster field distributionr(x,y>0)50.01
calculated for the channel of widthW5128 at different
stages of growth. The figure demonstrates the evolution
cluster shape at the positions of the active front zoneXF
516, 64, 144, and 256. For each stage of the cluster grow
one can observe the classic Ivantsov law@19# in the tip re-
gions of the curves. As a result, the cluster widthD exactly
resembles the scalingD;XF

1/2 illustrated by the auxiliary
curve y;x1/2. It should be noted that similar contour plo
were obtained by Kassner and Brener@20# when they con-
structed the noiseless DLA model from the macrosco
principles of the cluster tip formation.

In Fig. 2, we present the spatial cluster distribution in t
case ofXF5256. The figure shows the contour plots of th
cluster fieldr(x,y) @Fig. 2~a!#, the longitudinal profile of
r(x,y) in the sectiony50 @Fig. 2~b!#, and the transverse
profile of r̄(x,y)[r(x,y)/r(100,0) in the sectionx5100
@Fig. 2~c!#. The obtained contour plots are characterized b
fingerlike shape where the tip length slightly exceeds
base one, so the maximal cluster widthDmax'46 is observed
in a neighborhood of the sectionx5100. In this section, the
transverse cluster profile@Fig. 2~c!# demonstrates a
convex-up behavior; the maximum of the density is rela

FIG. 1. Mean-field calculations of overall cluster shape p
formed inside channel of widthW5128 on square lattice (a51) in
linear source geometry. Thick curves represent contoursr(x,y
>0)50.01 of cluster field distribution at different stages of growt
numbers at the curves represent positions of active front zoneXF .
Thin auxiliary curve is functiony;x1/2 illustrating by dotted lines
the scaling behavior of front widthD;XF

1/2.
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to the cluster axe. As shown by Fig. 2~b!, there are three
distinct regions in the longitudinal profile of the cluster fiel
First there is some initial transient regimexP(0•••50)
where one progressively loses the influence of initial con
tions to the benefit of the growth. In this region, the clus
density decreases from 1 to a constant valuer'0.6. Then,
there is a region of a stable growthxP(50•••240) where the
cluster field changes insignificantly. In the third regionx
P(240•••256), there is a rapid falloff of the density.

2. Ensemble averaging

In order to compare the theoretical mean-field predictio
with results of a statistical analysis of DLA clusters, one h
to measure the mean occupancy distributionr(x,y) obtained
from an ensemble averaging over a given number of clus
N. For Monte Carlo~MC! simulations, we use the class
Witten-Sander algorithm@1#. The walkers are released from
a linear source outside the cluster; when a walker beco
adjacent to the cluster, the walker site is considered to
occupied. In a given channel, we growN aggregates with the
same total numberM of particles. We then count for eac
site how many times it has been occupied by a particle o
cluster. The mean occupancyr(x,y) is obtained by dividing
this number by the total numberN of realizations.

In Fig. 3, we present the analysis of the ensemble ave
ing of 23103-particle DLA clusters simulated in the chann
of width W5128. In order to decrease noise errors, the
sults are averaged over 1000 clusters. The figure dem
strates a two-dimensional representation of the cluster di
bution r(x,y) @Fig. 3~a!#, the longitudinal profile ofr(x,y)
in the sectiony50 @Fig. 3~b!#, and the transverse profile o

FIG. 2. Mean-field calculations of cluster field distributio
r(x,y) performed inside channel of widthW5128 on square lattice
(a51) in linear source geometry.~a! Contour plots ofr(x,y)
where the levels arer(x,y)50.01, 0.1, 0.3, and 0.5 from the oute
to the inner.~b! Longitudinal profile ofr(x,y) in the sectiony

50. ~c! Transverse profile ofr̄(x,y)5r(x,y)/r(100,0) in the sec-
tion x5100.
i-
r

s
s

rs

es
e

a
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ri-

r̄(x,y)[r(x,y)/r(100,0) in a neighborhood of the sectio
x5100 @Fig. 3~c!#. The obtained cluster distributionr(x,y)
and its profiles qualitatively resemble the results of the t
oretical predictions@Fig. 2#. To resume the difference be
tween the figures, the theoretical distributionr(x,y) is char-
acterized by more sharp behavior than the statistical one.
most discrepancy is related to the tip region of the longi
dinal cluster profile@Figs. 2~b! and 3~b!# and to the tails of
the transverse cluster profile@Figs. 2~c! and 3~c!# where the
observed dispersion of the statistical results drastically h
pers the detailed comparison.

To reduce the effect of noise, one of the possible way
to increase the number of realizationsN. However, the de-
pendence of the noise errordN on the numberN is rather
weak:

dN;
1

AN
. ~21!

To decrease the noise amplitude by 10 times, one ha
increase the number of clusters by 100 times. This w
seems to be impractical because of computational time li
tation. In order to decrease the noise influence in a m
efficient way, we combine the ensemble averaging with
noise-reducing algorithm introduced by Tang@3#. Rather
than take a single walk as an independent contribution to
cluster, a multiple registration for every interfacial site
considered. The site can be occupied only when it has b

FIG. 3. Statistical analysis ofN51000 DLA clusters containing
M523103 particles grown inside channel of widthW5128 on
square lattice (a51) in linear source geometry.~a! Mean cluster
occupancyr(x,y) in field-plot representation where the fields a
0.1<r(x,y),0.15, 0.15<r(x,y),0.2, and 0.2<r(x,y),1 from
the outer to the inner.~b! Longitudinal profile ofr(x,y) in the

sectiony50. ~c! Transverse profile ofr̄(x,y)5r(x,y)/r(100,0)
averaged over 20 sectionsxP(90•••110).
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registeredNR times; this scheme results in the reduction
spatial dispersion without the increase of total simulat
time @5–7#.

The application of Tang’s noise-reducing algorithm to t
ensemble averaging is summarized by Fig. 4, which ill
trates the mean cluster occupancyr(x,y) @Fig. 4~a!# and also
its longitudinal@Fig. 4~b!# and transverse@Fig. 4~c!# profiles
in the same way as Fig. 3. Even for a small number of r
istrationsNR54 the obtained dispersion of the cluster fie
significantly decreases in comparison to one observed w
out Tang’s scheme@Fig. 3#. The mean cluster occupancy
characterized by the same fingerlike shape@Figs. 2~a! and
3~a!#, and its longitudinal@Fig. 4~b!# and transverse@Fig.
4~c!# profiles seem to be described by the theoretical cur
@Figs. 2~b! and 2~c!# in a more precise way, especially in th
tip of the cluster and in the tails of the transverse profile

B. Circular source geometry

1. Mean-field predictions

Let us assume that motion and aggregation of the gro
units take place inside a circle. In this case, we have only
boundary condition at infinity where the flux of the walke
is fixed:

]u

]r
5w as r→`. ~22!

Here r[Ax21y2 is the distance from point (x,y) to the

FIG. 4. Statistical analysis ofN5250 DLA clusters~obtained
by Tang’s averaging scheme with number of registrationsNR54)
containingM523103 particles grown inside channel of widthW
5128 on square lattice (a51) in linear source geometry.~a! Mean
cluster occupancyr(x,y) in field-plot representation where th
fields are 0.1<r(x,y),0.2, 0.2<r(x,y),0.3, and 0.3<r(x,y)
,1 from the outer to the inner.~b! Longitudinal profile ofr(x,y)

in the section y50. ~c! Transverse profile of r̄(x,y)
5r(x,y)/r(100,0) averaged over 20 sectionsxP(90•••110).
f
n

-

-

h-

s

th
e

origin. As the initial condition, we consider the clust
nucleus located at the origin,r(0,0)51 @Eq. ~20!#.

The results of the mean-field calculations are summari
by Fig. 5, which shows the contour plots of theoretical d
tribution r(x,y). Each plot can be described as four symm
ric fingerlike branches that grow in directions^10&, ^1̄0&,
^01&, and ^01̄& due to the square lattice symmetry. Th
branches qualitatively resemble the shapes obtained in
linear source geometry@Fig. 2~a!#; only the width to length
ratios differ. In the region of active front zone, the clust
field is also observed to satisfy the scaling behaviorD
;XF

1/2 @Eq. ~4!#.

2. Ensemble averaging

For the statistical analysis, we average the cluster
semble simulated by the classic Witten-Sander DLA alg
rithm @1# and by Tang’s noise-reducing scheme@3# where the
walkers are released from a circular source outside the c
ter. In Fig. 6, we present the mean cluster occupancyr(x,y)
of 43103-particle DLA clusters averaged over 1000 simu
tions. The simple ensemble averaging results in a signific
noise dispersion of data that hampers the following analy
of the cluster distribution. This dispersion drastically excee
one observed in linear source geometry~Fig. 3!; one can
resolve only an anisotropic behavior of the cluster field.

The mean cluster occupancyr(x,y) of 43103-particle
DLA clusters shown in Fig. 7 is obtained from MC simula
tions where the averaging over 250 clusters is combined w
the additional Tang’s noise-reducing scheme~the number of
registrationsNR54). In contrast to Fig. 6, the noise redu
tion gives an opportunity to characterize the cluster field i
more detailed way. As seen in the figure, the obtained clu
distribution r(x,y) satisfactorily resembles the theoretic
prediction~Fig. 5!.

FIG. 5. Contour plots of cluster field distributionr(x,y) ob-
tained from mean-field calculations on square lattice (a51) in cir-
cular source geometry. Contour levels arer(x,y)50.01, 0.1, and
0.4 from the outer to the inner.
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3. Stochastic behavior of diffusive field

In conclusion of the paper, let us investigate the me
field approach introduced@Eq. ~9!# in the case of stochasti
behavior of the diffusive fieldu. This problem is consisten
with the following MC algorithm. Initially, a nucleus of the

FIG. 6. Field-plot representation of mean cluster occupa
r(x,y) of N51000 DLA clusters containingM543103 particles
grown on square lattice (a51) in circular source geometry. Th
fields are 0.05<r,0.1, 0.1<r,0.2, and 0.2<r,1 from the outer
to the inner.

FIG. 7. Field-plot representation of mean cluster occupa
r(x,y) of N5250 DLA clusters~obtained by Tang’s averagin
scheme with number of registrationsNR54) containing M54
3103 particles grown on square lattice (a51) in circular source
geometry. The fields are 0.05<r,0.1, 0.1<r,0.2, and 0.2<r
,1 from the outer to the inner.
-

cluster is located at the origin,r(0,0)51. Each walker mod-
eled by a simple random motion is considered to transfe
constant densityu0!1 ~in our simulations,u05 1

256). When
a walker becomes adjacent to the cluster, the attachm
probability P is calculated by the formula

P5r2~x11,y!1r2~x21,y!1r2~x,y11!1r2~x,y21!.
~23!

Then a random number 0,R,1 is simulated. IfR,P, the
walker transforms into the cluster site and advances the c
ter densityr(x,y) by the value ofu0. In the opposite case
R.P, that walker continues its random motion until it a
gregates somewhere on the cluster. As successive wa
repeat this process, the cluster density fieldr(x,y) is modi-
fied. The simulation is continued until the cluster reache
specified size.

The results of MC simulations are summarized by Fig.
which illustrates the cluster distribution in two-dimension
representation. The features of the obtained cluster field
nificantly depend on the length scale. On the one hand,
overall cluster shape satisfies the mean-field predic
shown in Fig. 5. The pattern can be described as a com
fingerlike structure with fourfold symmetry; near the grow
front, the cluster density rapidly increases from 0 to an
erage valuer'0.25. One the other hand, the cluster dist
bution also demonstrates a ramified behavior; within the p
tern, a fractal DLA-like ‘‘skeleton,’’ r(x,y)>0.5, can be
resolved. To resume, the observed cluster evolution inclu
a superposition of deterministic and random processes.
deterministic part is governed by the mean-field equati
introduced; the random one follows the stochastic DLA b
havior. As a consequence, we observe the effects of s

y

y

FIG. 8. Field-plot representation of cluster field distributio
r(x,y) obtained in case of stochastic walker behavior on squ
lattice (a51) in circular source geometry. The fields are 0.01<r
,0.25, 0.25<r,0.5, and 0.5<r,1 from the outer to the inner.
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branching and tip splitting that make the obtained patt
very similar to ones described in most diffusive syste
@21,22#.

IV. SUMMARY

~1! We have revised the Witten-Sander mean-field
proach of the DLA model in terms of the Boltzmann theo
of irreversible processes. Instead of the classic linear con
tion between the DLA intensity and the neighboring clus
densities, we propose the squared law followed from
phenomenological assumption. The derived mean-field eq
tions demonstrate both the front stability to infinitesim
fluctuations and the anisotropic behavior caused by the n
linearity of the approach introduced.

~2! We have examined the proposed mean-field equat
.

y

et

i,
n
s

-

c-
r
e
a-
l
n-

ns

to satisfy the scaling behavior for width of the active clus
zone experimentally known from DLA simulations.

~3! We have studied the ensemble averaging of DLA cl
ters grown on square lattice in linear and circular geomet
of source. The comparison between the mean-field pre
tions and the ensemble averaging gives a qualitative res
blance of the data. The discrepancy significantly decrea
when one proceeds to Tang’s noise-reducing DLA alg
rithm.

~4! We have investigated the influence of stochas
walker behavior on cluster field distribution. The overa
cluster shape is observed to satisfy the mean-field predic
calculated for deterministic walker motion. The local clus
distribution is characterized by fractal properties known
DLA structures; this results in the sidebranching and
splitting.
ids
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